
Name of indicator	2.3 Beach wrack Macrovegetation Index (BMI)
Type of Indicator	State indicator
Author(s)	Kaire Torn, Georg Martin, Madara Alberte
indicator	Indicator is based on the structure of macrovegetation of beach wrack. Representativeness of beach wrack data reflecting the biodiversity of macrovegetation in coastal area was tested during the study. Differences between submerged macrovegetation in coastal area and beach wrack samples were the smallest in July (table 1, Suursaar <i>et al.</i> , 2014). Compared to commonly used monitoring methods (Torn & Martin, 2011), BMI is easy to use and cost-effective. BMI was developed during a case study on data collected from northern Gulf of Riga (Baltic Sea) and tested in southern part of the Gulf of Riga. Indicator is based on relationship between eutrophication and species diversity in benthic vegetation. Index was developed based on presumptions: 1) key species (<i>Fucus vesiculosus, Furcellaria lumbricalis, Zostera marina, Charophyceae</i>) of the area were considered as valuable species for forming healthy communities, and 2) species richness of the community will shift toward increase in species number of filamentous algae due to disturbance e.g. eutrophication impact. This method can be recommended for the areas which are not affected by strong tides and currents or frequent extreme storm events.
Relationship of	Indicator reflects the diversity of macrovegetation species and abundance of community
the indicator to	forming species.
marine	
biodiversity	MCED descriptor 1
Relevance of the indicator to different policy instruments	MSFD descriptor 1
Relevance to	1.6. Habitat condition
commission	1.6.2. Relative abundance and/or biomass, as appropriate
decision criteria and indicator	1.7. Ecosystem structure 1.7.1. Composition and relative proportions of ecosystem components (habitats and species)
Method(s) for	Beach wrack samples were collected from three transects parallel to the shoreline in each
obtaining indicator values	study area during July 2011-2013. The samples were collected using a 20 cm × 20 cm metal frame at a distance of 1 m from each other. The freshest beach wrack (i.e., the closest wrack band to the water edge) was always chosen for sampling. The collected material was packed and kept frozen. In the laboratory, the species composition of the sample was determined. In laboratory occurrence of all species, abundance of key species (<i>Fucus vesiculosus, Furcellaria lumbricalis, Zostera marina</i> , charophytes) and total biomass of the sample were determined. As wrack specimens were often fragmented and detailed identification was impossible, the morphologically very similar species were treated as one group. Based on formula (1) index was calculated for all samples. Average index value is used. The equation for calculation of BMI is: $BMI = (1-P_{ks})/(1+P_{ks})x(N_f/N), \qquad (1)$ where P _{ks} is the proportion of key species (expressed as part per hundred), N _f means species number of filamentous algae, and N means total number of macrophyte taxa.
relationship between indicator and pressure	The index value can vary between 0 and 1, lower values show higher status of benthic biodiversity (better condition of valuable species). In the northern Gulf of Riga, lower index values (higher status of biodiversity) were detected in areas were water transparency was higher and nutrient concentrations were lower. Pearson correlations between the index values and pressure indicators were computed. Statistically significant relationships between index and water transparency (Secchi depth), BSPI (Baltic Sea Pressure Index) and total nitrogen were found in the northern Gulf of Riga (table 2, figure 1), whereas chlorophyll <i>a</i> showed a significant relationship with index values in the southern part of the Gulf (table 3, figure 2).
Geographical relevance of indicator	2. Regional
How Reference Conditions (target values/threshold s) for the indicator were obtained?	The reference conditions for the BMI, required for establishing GES boundary, were determined based on expert judgement and current data (index values determined in the MARMONI pilot area). The index value can vary between 0 and 1, lower values show higher status of benthic biodiversity (better condition of valuable species). The best possible BMI value (BMI=0) was set as reference condition. In case of reference conditions, the majority of vegetation biomass belongs to the valuable key species and the species number of filamentous algae is negligible.
] L

determining GES	GES (Good Environment Status) level was set by using concept of acceptable deviation from the reference conditions (European Commission, 2000). Quite a similar approach has been used in assessment method for the ecological status of Estonian coastal waters, using submerged aquatic vegetation and following the requirements of EU Water Framework Directive (WFD) (Torn and Martin, 2011, 2012). According to OSPAR Common Procedure for Identification of the Eutrophication Status of the Maritime Area, the acceptable deviation from reference conditions can be restrictive (15%), intermediate (25%) or non-restrictive (50%) (Andersen <i>et al.</i> , 2006). In the current study, intermediate (25%) deviation from the reference conditions was used as GES boundary (BMI values 0.25).						
References	Andersen, J.H., Schlüter, L., Ærtebjerg, G. 2006. Coastal eutrophication: recent developments in definitions and implications for monitoring strategies. Journal of Plankton Research, 28 (7): 621-628.						
	European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities L372/1.						
	Suursaar, Ü.; Torn, K.; Martin, G.; Herkül, K.; Kullas, T. (2014). Formation and species composition of stormcast beach wrack in the Gulf of Riga, Baltic Sea. Oceanologia, 56(4), 673 - 695.						
	Torn, K., Martin, G. 2011. Assessment method for the ecological status of Estonian coastal waters based on submerged aquatic vegetation. Brebbia, C.A.; Beriatos, E. (Toim.). Sustainable Development and Planning V (443 - 452). Southampton: WIT Press.						
		vironment	descripto		ubmerged aquatic vegetation to eutrophication- waters of the NE Baltic Sea. Estonian Journal of		
Illustrative	Table 1. Differences of species occurrence and abundance between submerged vegetation in						
material for					three studied areas, ANOSIM test R values are		
indicator					dicates that the separation between groups is		
documentation					overlapping but clearly differentiable groups, and		
	the R value over 0.75 indicates well separated groups.						
	Month	Area	R	р%			
	May	Kõiguste	0.150	1.50			
	May	Orajõe	0.469	0.01			
	May	Sõmeri	0.356	0.03			
	July July	Kõiguste Orajõe	0.127 0.300	2.20 0.05			
	July	Sõmeri	0.214	0.30			
	Sept.	Kõiguste	0.332	0.01			
		Orajõe	0.444	0.01			
1	Sept.						
	Sept. Sept.	Sõmeri	0.270	0.02			
	Sept. Table 2. Re Index) and	Sõmeri esults of Pe	earson co eutrophica	0.02 rrelation analys ation variables,	sis between BMI (Beach wrack Macrovegetation data from northern Gulf of Riga. Statistically		
	Sept. Table 2. Re Index) and	Sõmeri esults of Pe selected relationsh	earson co eutrophica	0.02	data from northern Gulf of Riga. Statistically		
	Sept. Table 2. Re Index) and significant Environme variables	Sõmeri esults of Pe selected relationsh	earson coleutrophication $(p < 0)$	0.02 rrelation analys ation variables,	data from northern Gulf of Riga. Statistically		
	Sept. Table 2. Re Index) and significant Environme variables BSPI	Sõmeri esults of Pe selected relationsh ental R 0,	earson co eutrophica ips (p < 0 78	0.02 rrelation analys ation variables,	data from northern Gulf of Riga. Statistically		
	Sept. Table 2. Re Index) and significant Environme variables BSPI Secchi (m)	Sõmeri esults of Pe selected relationsh ental R 0, -0	earson co eutrophica ips (p < 0 78 87	0.02 rrelation analys ation variables,	data from northern Gulf of Riga. Statistically		
	Sept. Table 2. Re Index) and significant Environme variables BSPI Secchi (m) Ntot (µmo	Sõmeri esults of Pe selected relationsh ental R 0, 0, -0, IN/I) 0,	earson co eutrophica ips (p < 0 78 87 63	0.02 rrelation analys ation variables,	data from northern Gulf of Riga. Statistically		
	Sept. Table 2. Re Index) and significant Environme variables BSPI Secchi (m)	Sõmeri esults of Pe selected relationsh ental R 0, 0, -0, IN/I) 0,	earson co eutrophica ips (p < 0 78 87	0.02 rrelation analys ation variables,	data from northern Gulf of Riga. Statistically		
	Sept. Table 2. Re Index) and significant Environme variables BSPI Secchi (m) Ntot (µmo Ptot (µmol Table 3. Re	Sõmeri esults of Pe selected o relationsh ental R 0,) -0, N/I) 0, P/I) 0, esults of Pe	earson col eutrophica ips ($p < 0$ 78 87 63 04 earson col eutrophica	0.02 rrelation analys ation variables, 0.05) are in bol no5) are in bol no5) are in bol	data from northern Gulf of Riga. Statistically		
	Sept. Table 2. Re Index) and significant Environme variables BSPI Secchi (m) Ntot (µmo Ptot (µmo Ptot (µmo Table 3. Re Index) and relationship	Sõmeriesults of Peselected ofrelationshentalR $0,$ P/I $0,$ P/I $0,$ esults of Peselected of $ps (p < 0.0)$	earson col eutrophica ips ($p < 0$ 78 87 63 04 earson col eutrophica 05) are in	0.02 rrelation analys ation variables, 0.05) are in bol no5) are in bol no5) are in bol	data from northern Gulf of Riga. Statistically d. sis between BMI (Beach wrack Macrovegetation		
	Sept. Table 2. Re Index) and significant Environme variables BSPI Secchi (m) Ntot (µmol Ptot (µmol Table 3. Re Index) and	Sõmeri esults of Pe selected o relationsh ental R 0, -0, IN/I) 0, P/I) 0, esults of Pe selected o ps (p < 0.0	earson col eutrophica ips ($p < 0$ 78 87 63 04 earson col eutrophica 05) are in	0.02 rrelation analys ation variables, 0.05) are in bol no5) are in bol no5) are in bol	data from northern Gulf of Riga. Statistically d. sis between BMI (Beach wrack Macrovegetation		
	Sept. Table 2. Re Index) and significant Environme variables BSPI Secchi (m) Ntot (µmol Ptot (µmol Table 3. Re Index) and relationship	Sõmeri esults of Peression esults of Peression relationsh ental R $0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -$	earson coleutrophica ips ($p < 0$ 78 87 63 04 earson coleutrophica 05) are in	0.02 rrelation analys ation variables, 0.05) are in bol no5) are in bol no5) are in bol	data from northern Gulf of Riga. Statistically d. sis between BMI (Beach wrack Macrovegetation		
	Sept. Table 2. Re Index) and significant Environme variables BSPI Secchi (m) Ntot (µmol Ptot (µmol Table 3. Re Index) and relationship Environme variables Chl a Secchi	Sõmeri esults of Peression esults of Peression relationsh ental R $0, -0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$	earson coleutrophica ips ($p < 0$ 78 87 63 04 earson coleutrophica 05) are in 58 63 04	0.02 rrelation analys ation variables, 0.05) are in bol no5) are in bol no5) are in bol	data from northern Gulf of Riga. Statistically d. sis between BMI (Beach wrack Macrovegetation		
	Sept. Table 2. Re Index) and significant Environme variables BSPI Secchi (m) Ntot (µmo Ptot (µmol Table 3. Re Index) and relationship Environme variables Chl a Secchi Ntot	Sõmeri esults of Peression esults of Peression relationsh ental R 0, -0, IN/I) 0, P/I) 0, esults of Peression 0, esults of Peression 0, esults of Peression 0, esults of Peression 0, estits of Peression 0, estits of Peression 0, estits of Peression 0, estits of Peression 0,	earson col eutrophica ips ($p < 0$ 78 87 63 04 earson col eutrophica 05) are in ,83 0,69 ,48	0.02 rrelation analys ation variables, 0.05) are in bol no5) are in bol no5) are in bol	data from northern Gulf of Riga. Statistically d. sis between BMI (Beach wrack Macrovegetation		
	Sept. Table 2. Re Index) and significant Environme variables BSPI Secchi (m) Ntot (µmol Ptot (µmol Table 3. Re Index) and relationship Environme variables Chl a Secchi	Sõmeri esults of Peression esults of Peression relationsh ental R 0, -0, IN/I) 0, P/I) 0, esults of Peression 0, esults of Peression 0, esults of Peression 0, esults of Peression 0, estits of Peression 0, estits of Peression 0, estits of Peression 0, estits of Peression 0,	earson coleutrophica ips ($p < 0$ 78 87 63 04 earson coleutrophica 05) are in 58 63 04	0.02 rrelation analys ation variables, 0.05) are in bol no5) are in bol no5) are in bol	data from northern Gulf of Riga. Statistically d. sis between BMI (Beach wrack Macrovegetation		

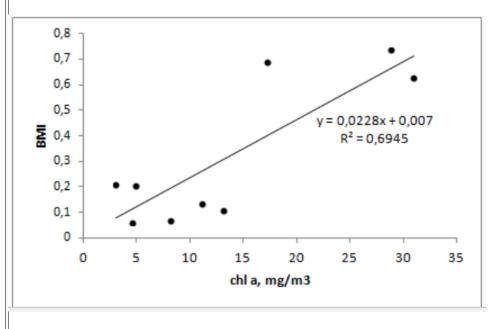


Figure 2. Relation between BMI and chlorophyll *a* based on data from southern Gulf of Riga, 2012-2013.